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Colloid aggregation with short-step diffusion: A more realistic model in the reaction limit

Agustin E. Gonzalez
Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM),
Apartado Postal 20-364, 01000 Mexico, Distrito Federal, Mexico
(Received 12 October 1992)

A computer model of reaction-limited colloid aggregation with diverse step lengths, allowing us to
reach steps as short as one-twentieth of the diameter, together with very low sticking probabilities
(0.001), is studied. In this paper a description is made of the algorithm, its importance, and the results

obtained from it.

PACS number(s): 02.70.—c, 05.40.+j, 64.60.Qb, 81.10.Dn

In recent years an increasing interest has evolved in the
growth and formation of random structures under non-
equilibrium conditions. Among these problems, aggrega-
tion phenomena have attracted considerable interest be-
cause of the possibility of substantial practical benefits
and their impact on different areas of science, such as
aerosol formation, droplet formation in clouds, polymeri-
zation processes, and colloid aggregation. Computer
simulations have played an important role in the develop-
ment of this area. In fact, much of what we know about
nonequilibrium growth processes has come from comput-
er simulations. They are invaluable tools that can be
used to test ideas concerning the behavior of experimen-
tal systems.

Shortly after the seminal work on diffusion-limited ag-
gregation by Witten and Sander [1], in which the growing
cluster was fixed in space, Meakin [2] and Kolb, Botet,
and Jullien [3] introduced the more realistic clustering of
clusters model for colloid aggregation, in which the clus-
ters as well as the particles were allowed to diffuse. Later
on, researchers identified two limiting regimes of the ir-
reversible aggregation process: rapid, diffusion-limited
colloid aggregation (DLCA), for which any collision be-
tween the colloidal particles results in the formation of a
bond, and slow, reaction-limited colloid aggregation
(RLCA), for which there is only a small probability for
the particles to form a bond. Although for DLCA there
is a clear correspondence [4] between experimental re-
sults and computer simulations, for RLCA there have
been serious difficulties in trying to match the two sets of
results. The fractal dimension is perhaps the only quanti-
ty for which the agreement between experiments and
simulations is good, being around 2.1. Besides morpholo-
gy, the other set of interesting results lies in the kinetics
of the aggregation process. The basic concerned quanti-
ties are the cluster size distribution N,(#), the weight-
average cluster size S(¢), and the number of clusters
N_ (1) [related to the number-average cluster size S, (¢) by
S,(t)=N,/N_(t), where N, is the number of initial col-
loidal particles].

Experimentally, after some transient time the cluster
size distribution function decreases algebraically with the
exponent 7: N (t)~s "g(s/S(t)), where g is a cutoff
function that decays rapidly to zero for values of the ar-
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gument greater than 1, while it takes the value of 1 for ar-
guments smaller than 1. Most researchers [5-10] find
values for 7 near 1.5 in a wide variety of systems, al-
though some others [11-13] have found values closer to 2
in some other systems, supposedly undergoing RLCA.
As for the average cluster size, most investigations
[7-10,14] agree on an exponential growth with time, at
least for the initial stages of the aggregation, crossing
over to an algebraic growth at later times [10,15]. At this
point we feel it is important to mention the theory by Ball
et al. [16] that indicates an exponent 7=1.5 and an ex-
ponential growth.

On the opposite side, the computer simulations in three
dimensions [17-19] have produced a whole variety of ex-
ponents 7 but seldom a value of 1.5, and in many of the
cases the exponents were varying with time. Meakin and
Family [18], for example, report varying values of 7
closer to 2 or to 1 than to 1.5, while the author [19] ob-
tains a diminishing exponent 7 for a lattice simulation
with step lengths equal to the lattice spacing (i.e., the par-
ticle size). It should be mentioned, however, that the au-
thors of Ref. [18] mainly use two algorithms [20,21] that
are related to RLCA, but that have not been shown to
coincide exactly with the original RLCA algorithm, that
is, the DLCA algorithm plus a small sticking probability
at encounters between colloidal particles.

A careful analysis of previous simulations of DLCA
and RLCA reveals that two important ingredients are
missing from the computer simulations, namely, (i) the
true step length of a diffusing Brownian particle or clus-
ter and (ii) the rotational diffusion of the clusters. Al-
though for DLCA these factors should not matter be-
cause there is bonding at first contact, in RLCA there are
many encounters between two colloidal particles belong-
ing to two clusters before they go away, coming from the
very short steps of the Brownian movement [22] and
from the very small angles of the rotational diffusion.
This rapid hitting of the two colloidal particles may
change the results of the simulations and hopefully would
lead us to the universal experimental results. That is why
it is important to consider newer simulations in which
these factors are taken into account, and to discriminate
between them and even discard them if they are unimpor-
tant.

2923 ©1993 The American Physical Society



2924

In the present paper I would like to reconsider the
RLCA algorithm, now with an emphasis in reducing the
step length, which in general should be much shorter
than the diameter [22]. An off-lattice model needs to be
used in this case, if we want to vary the step length con-
tinuously. In all these colloid aggregation algorithms in
the continuum, one tests for overlapping whenever a clus-
ter moves; it is therefore seen that a huge amount of com-
puting time would be spent in this testing, when using
very short steps. To increase the speed of the computa-
tion it was necessary to divide the clusters into two
categories: (1) those which have one or more nearby
neighboring clusters (with a suitable definition for this vi-
cinity) and (2) those which have not. These last clusters
can be moved with steps of a diameter or longer in size,
even if the fundamental basic step is very short, by invok-
ing a central limit theorem. So, we consider a three-
dimensional cubic box of side L, with periodic boundary
conditions, where at some intermediate time a collection
of clusters made of barely touching spheres diffuses ran-
domly. The step length of clusters 2 is the diameter D of
the particles and that of clusters 1 is D /F, with F greater
than 1. A record was kept, at all times, of the sum of the
diffusion coefficients for the two cluster categories (2,
and Z,), where the diffusion coefficient for a cluster of

size s varies as D (s)~s l/df, where d;=2.1 is the ac-
cepted value for the fractal dimension of RLCA clusters.
This last result states that the hydrodynamic radius of a
cluster is proportional to its radius of gyration, which
was demonstrated experimentally by Wiltzius [23]. A
cluster category is picked first; category 1 with probabili-
ty P, =3 ,F*/(2,F*+3,) and category 2 with probability
P,=1—P,. If category 2 was selected, a cluster 2 is
picked at random and moved by one step of a diameter in
size, only if a random number X uniformly distributed in
the range 0<X<l1 satisfied  the  condition
X <D (s)/D,,, where s is the size of the selected cluster
and D, is the maximum diffusion coefficient for any
cluster in the system. After each cluster has been select-
ed the time is incremented by 1/(D_, N.), whether or
not the cluster is actually moved. If, on the contrary,
category 1 was selected, a similar thing happens except
that now the time increment is given by 1/(D ., N.F?).
If some spheres of the moving cluster 1 attempt to over-
lap spheres of another cluster, the cluster either sticks
(and is merged) to the other with probability P,—taking
care to pull it back along the same line, such that only
two spheres belonging to the two clusters barely touch—
or it is put back to its original position with probability
1—P,.

In each simulation described here, 8000 initial particles
of diameter D =V'3 were used in a cube of size L =200.
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FIG. 1. A log-log plot of the number of clusters of size s, N,
vs s for the times (curve a) 1808, (b) 4915, (c¢) 22 026, (d) 36 316,
(e) 46 630, (f) 59 874, and (g) 76 880. The initial slope (curve ¢)
is —1.2, while those for curves d-g are (d) —1.16(0.09), (e)
—1.05(0.07), (f) —0.96(0.09), and (g) —0.85(0.15).

The sticking probability was always put at the value
0.001, because previous work [19] has shown that with
such P, we are well inside the RLCA regime. Three step
lengths were employed: D /1.4, D /5.0, and D /20.0.
Five simulations were performed for each of the 1.4 and
5.0 cases, but only two simulations were done for the 20.0
case. The simulations were stopped when a cluster
reached a maximum size of 800, and no signs of gelation
were shown at that time in any of the cases. A record
was kept of (a) the radius of gyration as a function of size
for all the clusters formed, (b) the number of clusters in
the system as a function of time, (c) the weight-average
cluster size as a function of time, and (d) the number of
clusters of size s as a function of s for different times.
Each 1.4, 5.0, and 20.0 simulation took about 21, 43, and
144 h of a Cray Y-MP computer processor, respectively.

In Table I are shown the values of the fractal dimen-
sion for each of the 12 simulations reported here, ob-
tained from the inverse of the slopes of the log-log plots
of the radius of gyration versus size. All the errors (in
parentheses) shown in this paper correspond to twice the
standard deviation. We see that the average fractal di-
mension for the D /1.4 case falls within 3% of the accept-
ed value of 2.1. However, we also notice that the average
fractal dimension d '+ decreases a little when we decrease
the step length, although it is not possible to state this
conclusively due to the high dispersion of the data, which
is a consequence of not having used many particles.

In Fig. 1 we see a log-log plot of N (¢) vs s at different
times, for one of the D /5.0 simulations. This graph is

TABLE 1. The fractal dimension d, and its average d for the different runs with step length L.

ds
! run 1 run 2 run 3 run 4 run 5 Ef
D/1.4 2.23(0.09) 1.86(0.07) 2.11(0.06) 1.99(0.08) 2.01(0.09) 2.04
D/5.0 2.04(0.08) 1.94(0.08) 2.02(0.07) 1.96(0.07) 2.15(0.08) 2.02
D /20.0 1.87(0.07) 2.13(0.08) 2.00
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FIG. 2. A log-log plot of S(¢) vs t for three different runs,
with step lengths of (curve a) D /20.0, (b) D /5.0, and (c)
D/1.4.

typical of all the simulations performed and shows the
following features: after some transient time for which
there is a clear curvature (curves @ and b), the cluster size
distribution function starts to develop a straight line
(curve c). Unfortunately, the slope of this line does not
maintain but keeps decreasing during the whole aggrega-
tion process. This is contrary to most experimental re-
sults, for which the slope is maintained at the value 1.5.
An interesting effect coming from the different step
lengths is observed in Fig. 2, where log-log plots of the
weight-average cluster size versus time for the three
different step lengths are shown. We see that S(¢) ap-
pears to grow exponentially with ¢ at the beginning,
crossing over to an algebraic growth at later times
[S(2)~t*]. However, the effect of decreasing the step
length translates into a decrease of the whole aggregation
time, similar to what was happening in previous simula-
tions [19] when an increase of the sticking probability
was made. In fact, by comparing the curves in Ref. [19]
with those in Fig. 2, we see that the decrease in step
length from D /1.4 all the way to D /20.0 corresponds to
an increase of more than 10 times the sticking probabili-
ty. This indeed corroborates that, when the step length is
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FIG. 3. A log-log plot of N.(¢) vs t for the same three runs of
Fig. 2.

TABLE II. The limiting slopes of the log-log plots of S(#)
(exponent z) and N (¢) vs t, for the different runs with step
length L

Exponent z

! Run 1 Run2 Run 3 Run 4 Run 5 Average
D/1.4 2.0 2.4 2.0 2.13
D/5.0 2.4 1.9 2.0 2.1 2.10
D /20.0 1.9 2.2 2.05

Limiting slope of N,(¢)

) Run1l Run 2 Run 3 Run 4 Run 5 Average
D/1.4 —2.0 —19 —1.9 —2.0 —1.95
D/5.0 -21 =19 —-18 —19 —138 —1.90
D/20.0 —1.8 —1.8 —1.80

much shorter than the diameter, two nearby colloidal
particles perform many encounters before they go away.
It is reasonable, therefore, to expect also a decrease in the
fractal dimension.

The log-log plots of the number of clusters versus time,
displayed in Fig. 3, show the same effect in time as in
Fig. 2. From Figs. 2 and 3 it is possible to see that the
final slopes for the N,(¢) curves are roughly the negatives
of those for the S (¢) curves. This indicates that, at the
end of the aggregation, S(¢)~.S,(¢). Due to not having
used a very large number of particles, the final slopes for
the S(¢) and N_.(¢) curves are not well defined in some
simulations. In Table II are shown these limiting slopes,
for those cases in which it was possible to define a
straight line. From the average values, we see that the
exponent z lies around 2.1.

Finally, in Fig. 4 are shown the semilogarithmic plots
of S(t) and N,(t) as a function of ¢, for one of the simula-
tions with a step length of D /5.0. They were plotted in
order to check that the weight-average cluster size really
starts to increase exponentially. This graph is also typi-
cal of all the simulations performed, for all the step
lengths, in that the exponential growth occurs only for a
very short fraction of the aggregation time. The only ma-
jor difference, already mentioned, between similar graphs
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FIG. 4. A semilogarithmic plot of S(¢) and N .(¢) vs ¢, for one
of the runs with / =D /5.0.
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with different step lengths lies in the size of the aggrega-
tion time. Nonetheless, it is possible to see that the initial
slope for S(¢) is roughly twice as big as the negative of
the initial slope for N (t), and this was checked in all the
12 simulations performed. This now indicates that, at the
beginning of the aggregation, S (¢)~[S,(¢)]%

In conclusion, it appears that the sole inclusion of
short steps is not enough to produce a constant exponent
7, with the value of 1.5. We also need an exponential
growth of the mean cluster size, if not for the whole ag-
gregation time at least for a good part of it [10,15]. A
moment of reflection shows that, in order to have a con-
stant exponent 7 and not a decreasing one, we need a
mechanism that would increase the speed of the aggrega-
tion of medium-sized and big clusters. This mechanism
would also make the mean cluster size grow faster,
perhaps exponentially fast for a longer range of time.
When two big clusters get close, they do so not only at a
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single pair of approaching particles but at several pairs.
However, it seems that for rigid clusters one of these
pairs is favored for encounters, while at the same time
hinders the collisions at the other pairs, if only transla-
tional diffusion is allowed. It then appears that the mech-
anism we need could be the small-angle rotational
diffusion which, together with the short-step translational
diffusion, would make all those pairs fully accessible for
encounters. The development of such an (efficient) algo-
rithm looks complicated, but would be of interest.
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